Wonder
Learning Partnership
Educate | Empower | Engage | Enrich

Calculation Policy
 Primary

Draft 1

Table of Contents

Addition. 1
Year 1 1
Year 2. 7
Year 3. 11
Years 4-6 13
Subtraction. 14
Year 1 14
Year 2. 15
Year 3. 17
Years 4-6 18
Multiplication 19
Year 1 19
Year 2. 22
Year 3 24
Year 4. 25
Year 5. 26
Year 6. 27
Division 29
Year 1. 29
Year 2. 31
Years 4-6 34
Year 6 Long Division 35
Fractions, Decimals and Percentages 40
Year 1 40
Year 2 41
Year 3 42
Year 4 45
Year 5 48
Year 6 49
Measure 52
Year 1 52
Year 2 53
Year 3 54
Year 4 55
Year 5 56
Year 6 56
Algebra. 61
Year 6 61

Addition

$\begin{aligned} & \text { T } \\ & \\ & \end{aligned}$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	Comparing objects, groups of objects. Length, weight, mass, heavier, lighter, same, equal.	Compare children's height, compare distance, compare mass of objects. Compare multiple objects (use bears, jewels, cubes etc to create groups of different sizes to compare). Use of pan balance with numicon to show equivalence = < >		
	Using < > and = Fewer, more, less than, more than, equal to, fewer than	Use multilink to create different amounts.		Use variation with missing boxes:

				$3 \bigcirc 4 \quad 4>\square$ $2 \bigcirc 2 \quad \square<6$
	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	Finding one more, finding one less More, less			One more/less sentences - example one: 1 more than 3 is \square 1 less than 2 is \square 1 more than \square is 1 1 less than \square is 1
	Adding 1 gives 1 more Add, more			Show variation in representations: $\begin{aligned} & 6+1= \\ & 1+5= \end{aligned}$

	Augmentationincreasing an amount	Use FIRST, THEN, NOW and range of practical situations for showing augmentation. E.g. first there were three children on the carpet then 2 more came. Now there are 5 children on the carpet.		irst 日に			$\begin{aligned} & 4+3=7 \\ & 4+?=7 \end{aligned}$	$\frac{+3}{4+3=7}$
	Objective, strategy and key vocabulary.	Concrete	Pictorial					Abstract
	Stories of numbers within 10	Children work with tens frames (e.g. egg boxes of 10) and other practical apparatus to describe 'stories of ten'.	$10+0$ $9+1$ $8+2$ $7+3$				Calculati $\begin{aligned} & 3+4=7 \\ & 6+1=7 \\ & 1+6=7 \\ & 5+2=7 \end{aligned}$	s within 10, $\begin{aligned} & 7+0=7 \\ & 2+5=7 \\ & 0+7=7 \\ & 4+3=7 \end{aligned}$

Regrouping to make 10. (This skill will be essential when moving onto column addition later.)	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures number line. or partition tt number to r	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do ladd on now?
Represent \& use number bonds and related subtraction facts within 20 Number bonds	Start with the bigger number and use the smaller number to make 10. Use ten frame	Use pictures or a number line. Regroup of partition the smaller number using the $\mathrm{p}=$ part whole model to make 10.	Emphasis should be on the language ' 1 more than 6 is equal to 7. . ' 5 more than 9 is equal to 14 ' ' 2 more than 5 is equal to 7 '

Adding I and 2 \square
Bonds to 10
Adding 10

Adding 10
Bridging/
compensating

Adding 0
Near doubles

\pm	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
\|	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	Use related number facts.		Draw representations of hundreds, tens and ones.	Show that: $\begin{aligned} & 3+4=7 \\ & 30+40=70 \\ & 300+400=700 \end{aligned}$
	Use bar models.		Show that $12+8=20$ using real-life objects, then cubes, then drawing the objects/cubes onto a bar model template.	Progress to using digits in the bar model template (showing proportion):
	Add a 2 digit number and ones.	Use tens frames to represent 'bridging' the ten with the ones. Use 'real life' egg box tens frames with concrete manipulatives.	Use a number line:	Explore related facts:$\begin{aligned} & 35+3=? \\ & ?+3=38 \\ & 38=35+? \end{aligned}$38 3 35

Subtraction				
$$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	Read, write and interpret calculations involving the ' - ‘sign.	Physically remove items to view subtraction as 'taking away', such as groups of bears:	Cross out items represented pictorially: Use a number line to count back:	Use the - sign in written calculations: $\begin{gathered} 9-3=6 \\ 10-3=7 \end{gathered}$ Include the effect of subtracting zero.
	Represent and use number bonds and related subtraction facts within 20 Part-Part-Whole model	Link to addition with use of the partwhole model representation. $\begin{aligned} & 6=4+2 \\ & 6-4=2 \end{aligned}$ Model using cubes and other manipulatives on large part-whole model templates	Extend to use of pictorial representations.	Use numbers in the part-whole model; extend representation of part-whole 'cherry' model to various orientations.

	Compare numbers by finding the difference	Use counters to represent difference, e.g: The cars in the car park	 Represent structures using comparative models.	Introduce numbers to the concept of finding the difference, e.g. The difference between 10 and 6 is 4 . The part that is the same is 6 , the part that is different is 4 (demonstrated by the pictorial representation).
	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { N } \\ & \\ & \underset{\sim}{1} \end{aligned}$	Subtract efficiently by making ten.	Make 15 on the 15-9 = ten frame. Take 5 away to make ten, then take 4 more away so that you have taken 9.	$15-9=$ Jump back 5 first, then another 4. Use ten as the stopping point.	$16-9=$ How many do we take off first to get to 10 ? How many left to take off?
	Counting on to next ten (Progression - crossing one ten, crossing more than one ten, crossing the hundreds.)	Use beadstrings to model taking ten, then the remaining amount. E.g. 37-12	$\text { e.g. } 37-12=25$ NB: The second number has been partitioned and subtracted separately in tens and ones.	$\begin{aligned} & 37-12=? \\ & 37-?=25 \\ & 25=37-? \end{aligned}$ Children are encouraged to use the inverse to recognise the relationship between addition and subtraction.

$$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	Column subtraction without regrouping	Use dienes or numicon to model:	Draw representations to support independent understanding:	Use extra 'expanded' step if necessary to support $\quad 90+8$ understanding: $\frac{-30+6}{60+2}$
	Column subtraction with regrouping	Use dienes to model exchanging one ten for ten ones, for example in the calculation:	Draw representations to support:	Use formal written representations. \qquad Move to three digit subtraction:

Year 6-Subtract with increasingly large and more complex numbers and decimal values.	As above.	As above.	$\begin{array}{r} \text { Y" } 810,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline \quad \begin{array}{r} 185 \cdot 3119 \mathrm{~kg} \\ -\quad 36.080 \mathrm{~kg} \\ \hline 69.339 \mathrm{~kg} \end{array} \\ \hline 6 \end{array}$

Multiplication

$\begin{aligned} & \text { H } \\ & \underset{\sim}{O} \\ & \underset{\sim}{2} \end{aligned}$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	Key vocabulary used in Y1 multiplication and division: share, share between, share equally, group, groups of, lots of, array.			
	Doubling.	Use numicon, cubes and other manipulatives to demonstrate the concept of doubling:	Use pictures as a method of calculating and representing doubles:	Use numbers and symbols, extending to 'one more than double':

	Counting in multiples.	Children 'skip count' as teacher models this using a beadstring or groups of cubes/objects.	Children use/make pictorial representations. They can create these themselves and teachers can provide images to \square support understanding. 을읍을을 을 울읍읍 을 읍읍읍을 - - - - -	Children count aloud in multiples (teacher can use counting stick/hoop to support). Children can write number sequences in multiples: $\begin{aligned} & 2,4,6,8 \ldots . \\ & 5,10,15,20 \end{aligned}$
	Make equal groups and count the total.	Use concrete resources to make equal groups.	Use representations to show equal groups: Children solve problems using	$\begin{aligned} & 2 \times 5=10 \\ & 10=5 \times 2 \end{aligned}$ Double 5 is 10 $2 \times ?=8$
	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Repeated addition.		Use hops along a number line:	$2+2+2+2+2=10$ 5 hops of $2=10$

$\begin{aligned} & N \\ & \frac{1}{\mathbb{N}} \\ & \frac{11}{2} \end{aligned}$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	New vocab for Y2 multiplication and division: divide, divided by, divided into, division, left, left over.			
	Doubling two digit numbers.	Model doubling using dienes/PV counters/numicon; partition to reinforce understanding of place value.	Children draw representations of dienes to support calculations for doubling.	Partition a number, then double each part before recombining to total.
	Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$Ii1) $1 i 1$ $1 i 1$ $1 i 1$ 	Children use number lines, 'empty' number lines and bar models:	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

$\begin{aligned} & \text { ナ } \\ & \stackrel{y}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	New vocab introduced in 4 for multiplication and division: factor, quotient, divisor.			
	Recap grid method from Year 3 extending to multiply a 3 digit number by a 1 digit number.	See above (grid method Y3)		

	Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	10 3	10 100	$\begin{aligned} & \hline 8 \\ & 80 \\ & \hline 24 \\ & \hline \end{aligned}$	```123 < 45 st step 123 $ 45 2nd step 123 \begin{array} { r } { \times \quad 4 5 } \\ { \hline 6 1 5 } \end{array} 0 c 3rd step 123 +45 615 (123 > 5) 4920 (123 < 40) \frac{55335}{1}(615 + 4920)``` Children continue to count on regularly, including steps of powers of 10 . (They multiply whole numbers by 10,100 and 1000, including decimals.) Understanding that the scaling of multiples of 10 can be used to convert between units of measure is explored (e.g. metres to kilometres means multiply by 1000 .) Pupils use practical resources and jottings to explore equivalent statements: e.g. $4 \times 35=2 \times 2 \times 35$
$\begin{aligned} & 6 \\ & \frac{1}{\pi} \\ & \end{aligned}$	Objective, strategy and key vocabulary.	Concrete	Pictorial			Abstract
	Continue to use methods for long division as Y5.	See Y5.				

Multiplying decimals up to 2 decimal places by a
 single digit.

Children are also introduced to multiplication of numbers with up to two decimal places by one-digit and two-digit numbers.

They begin by starting with simple cases, such as: $0.4 \times 2=0.8$

They then move on to more complex problems: e.g.

```
3.19
*8
25,5% 2
```

(2) Line up the decimal points in the question and the answer Remember that the single digit belongs in the 'ones' column

NB: This method works well for multiplying money (£.p) and other measures.

Children experiment with order of operations ‘BIDMAS'

Division				
$\begin{aligned} & \text { r } \\ & \text { 10 } \\ & \end{aligned}$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract

Division as sharing.

$\begin{aligned} & N \\ & \\ & \end{aligned}$	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
	Division as sharing.	"I have 15 cubes. Can you share them equally between 3 friends?"	Children use pictures to support understanding of sharing: 15 sweets shared between 3 people $15 \div 3=$ Children use bar models to support conceptual understanding:	$\begin{gathered} 12 \div 3=4 \\ 9 \div 3=3 \end{gathered}$
	Division as grouping.	Divide objects into equal groups. How many groups of 3 can be made with 12 flowers?	Usen umber ines and bar modes for grouping: There are 4 counters in each of the 5 groups. A bar model can show how the parts of a problem are related Complete the bar model into 5 equal groups. \square	$20 \div 5=?$

Year 6 Long Division

- Use the formal long division method - either DMSB or chunking

Step 1 - A remainder in the ones.	$\begin{gathered} h t o \\ 041 \mathrm{R} 1 \\ \hline 4 \longdiv { 1 6 5 } \end{gathered}$ 4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160). 4 goes into 16 four times. 4 goes into 5 once, leaving a remainder of 1 . $\begin{aligned} & \text { thhto } \\ & 0400200 \mathrm{R7} \\ & \hline 3207 \end{aligned}$ 8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$. 8 goes into 32 four times $(3,200 \div 8=400)$ 8 goes into 0 zero times (tens) 8 goes into 7 zero times, and leaves a remainder of 7 . $4 \longdiv { h t o } \begin{array} { r } { \text { h } } \\ { 0 6 1 } \\ { \hline 2 4 7 } \\ { \frac { - 4 } { 3 } } \end{array}$ When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 . Check: $4 \times 61+3=247$ $\begin{array}{r} \text { th } \mathrm{ht} 0 \\ 0402 \\ 4 \longdiv { 1 6 0 9 } \\ \frac{-8}{1} \end{array}$ When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 . Check $4 \times 402+1=1,609$

Long Division

Step 2－A remainder in the tens．			
	1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
	$t \bigcirc$	$t \bigcirc$	t o
	2	2	29
	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
		－4	－4 \downarrow
		1	18
	Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens－－but there is a remainder！	To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten．	Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18 ．

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$=\frac{4}{18}$	－4 18	$\frac{-4}{18}$
18	－18	-18
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

	Long Division			
	$\text { Step } 2 \text { - A }$	1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
	in any of the place values.		$\begin{gathered} n+0 \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$	$\begin{gathered} n+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$
		Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	Next, drop down the 7 of the tens next to the zero.
		Divide.	Multiply \& subtract.	Drop down the next digit.
		$\begin{gathered} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$	$\begin{gathered} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$	$\begin{gathered} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -\quad 6 \\ \hline 18 \end{gathered}$
		Divide 2 into 7 . Place 3 into the quotient.	Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the 1 leftover ten.
		1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
		$\begin{gathered} n 10 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{aligned} & n+0 \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{0} 7 \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{gathered} n+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 18 \\ \frac{-18}{0} \end{gathered}$ There are no more digits to drop down. The quotient is 139 .

The following sections are ideas of how the CPA can be used to support learners within different national curriculum objectives. The list of ideas is not exhaustive.

Fractions, Decimals and Percentages

	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
$$	Recognise, find and name a half as one of two equal parts of an object, shape or quantity.	Pupils can use fraction pizzas/shapes to recognise a half.	Pupils can recognise a half of a shape, objects and quantities by drawing them or seeing them drawn with potential lines drawn on. 00000000 0000000 Pupils can use pre-drawn or drawn shapes to find a half of a shape/objects. show one half in three different ways. \square	Pupils can find a half of a quantity and are secure in doing this using concrete and pictorial resources. Half of \square is \square

	Write simple fractions for example, $1 / 2$ of 6 $=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	Pupils can use Numicon to show simple fractions and recognise equivalence.
$\begin{aligned} & \text { m } \\ & \frac{1}{0} \\ & \frac{1}{2} \end{aligned}$	count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10	 Use counters on tens frames to make 1 whole. Use 0.1 counters as decimals and tenths as fractions.

Pupils can use bar models to show and recognise equivalence.
a) Colour $\frac{2}{4}$ of the bar model.

b) Colour $\frac{1}{2}$ of the bar model.

What fractions are shown?
 What fractions are shown?
a)

Children use tens frames to represent fractions as tenths. They can use visual representations of tenths in a tens frame find fractions.

Pupils can write simple fractions and find equivalence.

\square

Tenths Number Line

add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions			How to A $\begin{array}{r} \frac{1}{5}+\frac{3}{5} \\ \frac{1+3}{5}=\frac{4}{5} \end{array}$	$\begin{aligned} & \text { d Fractions } \\ & \begin{array}{l} 7 \times \frac{1}{2}+\frac{3 \times 2}{7 \times 2} \\ 7 \times 2 \\ \frac{7+6}{14}=\left(\frac{13}{14}\right. \end{array} \end{aligned}$
multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, 4 $1 \times 21=81$]	See Year 5	See Year 5	See Year 5	

	Measure			
	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
$$	Compare, describe and solve practical problems for: lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] mass/weight [for example, heavy/light, heavier than, lighter than] capacity and volume [for example, full/empty, more than, less than, half, half full, quarter] time [for example, quicker, slower, earlier, later]	Pupils can use a variety of measuring equipment, scales, cups/jugs and clocks/stop watches to describe and compare measurements.	Use representations like below:	Pupils can use the vocabulary taught to compare and describe measurements. Write longer or shorter to compare the ribbons. \square \square - The plain ribbon is \qquad than the stripy ribbon. - The stripy ribbon is \qquad than the plain ribbon. Write heavier or lighter to complete the sentence. The bottle is \qquad than the can.

$\begin{aligned} & N \\ & \frac{1}{\overparen{O}} \\ & \underset{\sim}{2} \end{aligned}$	- recognise and use symbols for pounds $(£)$ and pence (p); combine amounts to make a particular value. - find different combinations of coins that equal the same amounts of money.	Use toy money.	Draw coins/notes. $20 p$ £1 £5	
	- tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	Use clocks.	Draw clocks/use clock stamps or blank worksheets.	

$\begin{aligned} & \text { m } \\ & \frac{1}{\pi} \\ & \mathbb{U} \end{aligned}$	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (l/ml)	Children to use and handle a range of measure resources to aid learning.		$\xrightarrow[{ }_{3} \mathrm{~kg} \text { ond } 900 \mathrm{~g} \text { gnd } 450 \mathrm{~g}]{? .500 \mathrm{~g}}$	If the mass of two apples is 50 g , what is the mass of one apple?
	add and subtract amounts of money to give change, using both $£$ and p in practical contexts	Use physical coins and notes to aid learning. As Year 2			
	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12hour and 24-hour clocks estimate and read time with increasing	To use analogue clocks to manipulate numerals and roman numerals. As Year 2			

	accuracy to the nearest minute.			
	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.	Use squares to create the shape.	Draw the shape in books using the squares.	
	find the area of rectilinear shapes by counting squares.	$>$	Draw the shape in books using the squares.	

	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	As year 4.		
	calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes	As year 4.		
	estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water]	Use building blocks.	Use dotted paper to support.	$\mathrm{L} \times \mathrm{W} \times \mathrm{H}=$
	Solve problems involving the calculation and conversion of units of measure, using decimal notation up to 3 decimal places where appropriate.	Pupils can use PV charts and PV counters to help them with x and dividing by 10,100 and 1000 in converting units of measure. Pupils will need the conversion charts to help remind them.	Pupils exposed to tables, bar models, conversion charts and PV charts help them convert between different units of measure. Complete the diagram to show the conversions.	Pupils are secure in multiplying and dividing by 10,100 and 1000 and can do this without using the PV chart to help them convert.

	Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3 decimal places	Pupils should be able to handle and have access to concrete examples of items which show units of measure e.g. rulers of various sizes, measure tapes, measuring scales and weights, containers etc. Pupils can use PV charts and PV counters to help them with x and dividing by 10,100 and 1000 in converting units of measure. Pupils will need the conversion charts to help remind them.	Pupils use tables, bar models, conversion charts and PV charts help them convert between different units of measure. Complete the diagram to show the conversions.	Pupils can read, write and convert between units of measure.
	Convert between miles and kilometres	Pupils could make groups of 5 and groups of 8 to help them convert between miles and kilometres using the fact that 5 miles is approximately equal to 8 kilometres.	Pupils can use bar models and number lines to help them understand the relationship between miles and kilometres	Pupils recall the conversions between miles and kilometres and use these to convert - need to be secure in multiplying and dividing. Complete the conversions. 7.5 miles $=\ldots \quad \mathrm{km}$ \qquad $\mathrm{km}=55$ miles $160 \mathrm{~km}=$ \qquad miles \qquad 96 miles $=$ \qquad km \qquad $\mathrm{km}=250$ miles

	Recognise when it is possible to use formulae for area and volume of shapes	Pupils may experiment with counting squares or cubes or using the formulae to see which method is most appropriate. Pupils may use dienes cubes, multilink, 3d and 2d shapes etc to help them with this.	Pupils can use isometric paper or squared paper to help them draw 2d and 3d shapes to help them decide whether to use a formulae or count squares/cubes.	Pupils are secure in the knowledge that area of a shape is the space inside and the perimeter is the distance around the outside. Pupils no longer need to count squares but can apply the formulae to rectilinear and composite shapes. Work out the areas and perimeters of the shapes.
	Calculate the area of parallelograms and triangles		Pupils can count squares to help them calculate the area of triangles and parallelograms. Copy the parallelogram onto centimetre squared paper. Estimate its area by counting squares. Complete the sentences to find the area of the triangles. The triangle has _full squares. The triangle has ___ half squares. $\square^{+}-\quad=$	Pupils can use the formulaes to help them calculate the area of triangles and parallelograms.

Pupils can use isometric paper to help them draw 3d shapes to help them calculate the volume.

Pupils can use their knowledge of the formulae to find the volume of shapes where they can and can't count the cubes.

Finding the Volume by Counting Cubes

Algebra

Input, Output, Function, Rule, Inverse Operations

	Input, Output, Function, Rule, Inverse Operations			
	Objective, strategy and key vocabulary.	Concrete	Pictorial	Abstract
$\begin{aligned} & 6 \\ & \frac{1}{10} \\ & \mathbb{1} \end{aligned}$	Use simple formulae	Represent each person's age using cuisenaire rods, place each person above each other to show comparisons. Using Algebra Tiles to represent the expression Students should lay tiles on a mini-whiteboard so that Students can write down their process. Students should then use the idea of zero-pairs to eliminate ones on one side. $\square \quad \square \quad \square \quad \square \quad \square$	Represent each person's age using cuisenaire rods, place ears. Students should draw the x tiles first and then work in columns to add the ones, as shown below: \square $=$ \square \square $=1$	Students should represent each person's age as an A x B $\quad \mathrm{x}+2$ C $\quad x-1$ D $2 x+4 \begin{aligned} & \text { This could be erepresented } \\ & \text { ast } \\ & \text { studerent seopendindy on }\end{aligned}$ (11) $3 x-1=5$ (41) $3 x=6^{(+1)}$ (-3) $x=2 \div 3$ $x=2$
	Generate and describe linear number sequences	It will be beneficial if students use the manipulatives on top of a whiteboard for this stage Students should identify that the sequence increases by 3 each time $\underbrace{4 \cdot}_{+3} \underbrace{7}_{+3} \cdot 10 \cdot 13 .$ Students should then know that the sequence is linked to the 3 times table. Students should then represent this using the manipulative. Since the sequence increases by 3 . the 3 block will be needed.	It may be useful for weaker students to shade in the term-to-term blocks to make them easier to count and distinguish.	Students however MUST be able to clearly justify why by explaining that is the sequence is "one more than the three times table, therefore the rule is $3 n+1$."
	Express missing number problems algebraically	Create a representation to show the equation $2 m+2=6$ Pupils could begin by handling a range of physical objects and	Bar models, part-whole models and pictorial drawings of concrete objects	Pupils can expressing missing number problems using numbers and symbols, as well

